정다면체

고른 다면체 Uniform Polyhedra

정다면체
Regular Polyhedra

준정다면체
Quasiregular Polyhedra

반정다면체
Semiregular Polyhedra

볼록 정다면체
Platonic Solids

오목 정다면체
Kepler-Poinsot Polyhedra

오목 준정다면체

아르키메데스 다면체
Archimedean Solids

각기둥

엇각기둥

오목 반정다면체

고르지 않은 다면체 Non-uniform Polyhedra

존슨 다면체
Johnson Solids

카탈란 다면체
Catalan Solids

다각뿔
Pyramids

쌍다각뿔
Dipyramids

엇쌍다각뿔
Trapezohedron

정다면체
Regular Polyhedra

볼록 정다면체
Platonic Solids

오목 정다면체
Kepler-Poinsot Polyhedra

정사면체

정육면체, 정팔면체

정십이면체, 정이십면체

작은 별모양 십이면체, 큰 십이면체

큰 별모양 십이면체, 큰 이십면체

1. 개요
1.1. 볼록 정다면체
1.1.1. 성질
1.2. 오목 정다면체
1.3. 선과 점의 개수

1. 개요

正多面體/Regular Polyhedron

기하학에 등장하는 3차원 도형의 일종.

흔히 플라톤의 다면체라고 말하는 볼록 정다면체 5종과 일상적으로는 정다면체라고 부르지 않는 오목 정다면체 4종까지 일컫는 말. [1] 예로부터 정다면체는 다섯 가지만이 존재한다고 알려져 있었는데, 케플러는 이 정의에서 사용하는 면을 오목정다각형까지 확장시켰고, 두 개를 정다면체의 개념에 추가하였다. 이후 푸앵소는 이 정의에서 한 꼭지점에서 만나는 면의 개수를 분수번까지 확장시켜 케플러가 만든 다면체의 쌍대에 해당하는 두 개의 다면체를 찾아내었다.

주사위에서는 공평함을 위해 정다면체를 쓰는 일이 많다. 엄밀히는 반정다면체의 쌍대다면체등도 공평하게 쓸 수 있지만 말이다.

1.1. 볼록 정다면체

볼록 정다면체에는 오로지 다섯 가지 정다면체(정사면체, 정육면체, 정팔면체, 정십이면체, 정이십면체)만 존재한다.

1.1.1. 성질

오로지 다섯 개의 볼록 정다면체만 존재한다는 것은 다음과 같이 매우 간단하게 증명할 수 있다.

  • 다면체에서 최소한 세 개의 면이 있어야 하나의 꼭짓점이 만들어진다.
  • 각 꼭지각의 합은 360보다 작아야 한다.
  • 다면체를 구성하는 면은 모두 합동이므로 각 꼭지각의 크기는 같다. 한편, 이런 꼭지각이 최소 세 개로 구성되므로 모든 꼭지각의 크기는 360°÷3=120° 보다 작아야 한다.
  • 내각의 크기가 120°보다 작은 정다각형은 정삼각형 · 정사각형 · 정오각형 뿐이다.
  • 정삼각형: 내각의 크기가 60°이므로, 하나의 꼭짓점에 모일 수 있는 삼각형면의 개수는 3개 · 4개 · 5개이다. 이것은 각각 정사면체 · 정팔면체 · 정이십면체에 해당한다.
  • 정사각형: 내각의 크기가 90°이므로, 하나의 꼭짓점에 모일 수 있는 사각형면의 개수는 3개이다. 이것은 정육면체에 해당한다.
  • 정오각형: 내각의 크기가 108°이므로, 하나의 꼭짓점에 모일 수 있는 오각형면의 개수는 3개이다. 이것은 정십이면체에 해당한다.

1.2. 오목 정다면체

오목 정다면체에는 네 가지 다면체(작은 별모양 십이면체, 큰 십이면체, 큰 별모양 십이면체, 큰 이십면체)가 존재한다.

1.3. 선과 점의 개수

아래에서 모든 볼록 정다면체의 V-E+F=\,<math>2</math>가 나온다.

이를 오일러 지표라고 하는데, 모든 볼록 다면체에 대해 성립한다.

오목 다면체는 오일러 지표가 제멋대로이다.

정다면체

꼭지점의 개수(V)

모서리의 개수(E)

면의 개수(F)

V-E+F]]

정사면체

4

6

4

2

정육면체

8

12

6

2

정팔면체

6

12

8

2

정십이면체

20

30

12

2

정이십면체

12

30

20

2

작은 별모양 십이면체

12

30

12

-6

큰 십이면체

12

30

12

-6

큰 별모양 십이면체

20

30

12

2

큰 이십면체

12

30

20

2


  1. [1] 여기에서 의미를 더 확장시켜 모든 면이 같은 종류의 정다각형인 평면 타일링까지 포함하기도 하나, 이렇게 정의하는 경우는 정말로 드물다. 따라서 여기에서는 포함시키지 않는다.

분류

최종 확인 버전:

cc by-nc-sa 2.0 kr

Contents from Namu Wiki

Contact - 미러 (Namu)는 나무 위키의 표가 깨지는게 안타까워 만들어진 사이트입니다. (static)